Нем содержатся органические кислоты и. Что такое органические кислоты? Основные функции и их значение

Группа веществ с разнообразными свойствами, содержащаяся в продуктах растительного и животного происхождения, называется . Эта группа одна из шести групп, образующих растительные фитонутриенты . характеризуются тем, что в молекуле имеется одна или несколько карбоксильных групп. Наиболее широко органические кислоты встречаются в продуктах питания растительного происхождения. Часто такие кислоты называются фруктовыми. Они придают определенный вкус плодам. К наиболее часто встречающимся фруктовым кислотам относят лимонную, яблочную, щавелевую, винную, пировиноградную, салициловую, уксусную и др. Данные биологические вещества разные по своей структуре, а также по своей биологической роли в живых организмах. хорошо растворяются в воде и спирте.

Группы органических кислот

Согласно присущим им свойствам разделяют на две разных группы – летучие (легко испаряемые) и нелетучие (образующие осадок). К летучим кислотам относят уксусную, масляную, молочную, пропионовую, муравьиную, валериановую и др. Характерной особенностью летучих кислот является наличие запаха, они перегоняются с паром.

Нелетучие кислоты — это лимонная, винная, щавелевая, яблочная, гликолевая, глиоксилевая, пировиноградная, малоновая, янтарная, фумаровая, изолимонная и др.

Роль органических кислот в организме

Поддерживают кислотно-щелочное равновесие организма человека. Ключевой, очень важной функцией данных кислот является ощелачивание организма. принимают непосредственное участие в процессах пищеварения, в энергетическом обмене веществ, активизируют перистальтику кишечника, замедляют развитие гнилостных бактерий и процессов брожения в толстом кишечнике, нормализуют ежедневный стул, стимулируют выделение желудочного сока в желудочно-кишечном тракте. Таким образом, они улучшают пищеварение, снижают кислотность среды (ощелачивают организм), снижают риск развития желудочно-кишечных заболеваний. Говоря о роли органических кислот в организме человека нужно учесть тот факт, что каждой органической кислоте присущи определенные функции. Из известных органических кислот можно отметить следующее:
— бензойная и салициловые кислоты оказывают антисептический эффект
— урсоловая и олеиновая кислоты препятствуют атрофии скелетных мышц, понижают уровень сахара в крови, расширяют венозные сосуды сердца, способствуют снижению веса
— уроновые кислоты утилизируют соли тяжелых металлов, радионуклиды, способствуют образованию аскорбиновой кислоты
— тартроновая кислота затормаживает превращение углеводов в жиры, тем самым предупреждает ожирение и атеросклероз
— галловая кислота оказывает противогрибковый и противовирусный эффект
— оксикоричные кислоты оказывают желчегонное и противоспалительное действие
— яблочная, лимонная, винная и оксикарбонная кислоты снижают риск образования в организме нитрозаминов (канцерогенных веществ), а также ощелачивают организм
— молочная кислота оказывает противоспалительное и антимикробное действие а также является питанием для полезных бактерий кишечника

Недостаток органических кислот в организме

Нарушение кислотно-щелочного равновесия организма приводит к серьезным заболеваниям. Например, повышенная кислотность в организме снижает эффективность усвоения жизненно необходимых микроэлементов (калий, магний, кальций, натрий). Недостаток вышеупомянутых веществ как правило приводит к заболеваниям сердечнососудистой системы, вызывает заболевания мочевого пузыря и почек. Из-за недостатка кальция возникают боли в мышцах и суставах, снижается иммунитет организма. Повышенная кислотность в организме может возникнуть при неправильном питании. Такое питание связано с недостатком в ежедневном меню фруктов и овощей, избытком мяса и повышенном употреблении рафинированных углеводов. При повышенной кислотности в организме (такую болезнь называют ацидоз) человек набирает лишний вес, так как в его мышцах накапливается избыточная молочная кислота (не переработанная лактоза – молочный сахар). Повышается риск развития сахарного диабета. Дефицит микроэлементов приводит к болям в суставах, возникает остеопороз и хрупкость костей, нарушается обмен веществ. В некоторых случаях ацидоз может привести к возникновению онкологических заболеваний. Особое внимание на кислотно-щелочное равновесие организма нужно обратить людям с диабетом – эта болезнь нарушает правильный баланс веществ.

Основные источники органических кислот


содержатся в плодах растений в свободном состоянии, а в других частях растений – в связанных формах, в виде солей и эфиров. Концентрация органических кислот в растениях разная. В щавеле и шпинате содержание щавелевой кислоты достигает 16%, в яблоках уровень яблочной кислоты достигает 6%, в лимонах- 9% составляет уровень лимонной кислоты. Основные источники по содержанию отдельных видов органических кислот это:

1. Бензойная и салициловые кислоты – плоды клюквы, брусники, сливы, груши, корица
2. Урсоловая и олеиновая кислоты — малина, облепиха, плоды боярышника, яблочная кожура,трава лаванды, брусника, гранат, рябина
3. Уроновые кислоты – яблоки, груши, сливы, персики, алыча, морковь, свекла, капуста
4. Тартроновая кислота – кабачки, огурцы, капуста, айва, баклажаны
5. Галловая кислота – кора дуба, чай
6. Оксикоричные кислоты — мать-и-мачеха, листья подорожника, побеги топинамбура и артишока
7. Молочная кислота — прокисшее молоко, вино, пиво

Для полноценного функционирования организма человека крайне нужны . Поэтому они должны занимать достойное место в Вашем ежедневном меню.

Будьте здоровы и жизнерадостны!

Поскольку по профессии я медик, то о роли кислот в жизни человека знаю достаточно много. Расскажу о тех кислотах, что встречаются в природе, а также о тех, что являются наиболее важными с медицинской точки зрения.

Где кислоты встречаются в природе

С ними мы сталкиваемся каждый день, например, дождевые капли лишь при первом взгляде кажутся чистыми. В действительности они содержат немало веществ в растворенном виде. Например, присутствует раствор угольной кислоты - углекислый газ, ну или серная кислота , что является последствием выброса выхлопных газов. Наша пища также богата кислотами, например, молочнокислая в кефире или угольная кислота в газировке. Благодаря соляной кислоте в нашем организме возможно пищеварение, в ходе которого происходит расщепление белков для синтеза особо важных элементов - аминокислот .

Органические кислоты

Однако наибольшую важность для жизни на нашей планете представляют органические кислоты , что играют особо важную роль в жизненном цикле. Основой человека являются клетки, состоящие из протеина и белков, поэтому нам необходимо питаться для восполнения запаса этих веществ. Однако для питания важны лишь те белки, что содержат аминокислоты . Но что такое аминокислоты? Существует свыше 165 видов, однако ценность для организма представляют лишь 20, что выступают в качестве основной структурной единицы каждой клетки.


Наше тело способно синтезировать всего 12 , естественно, при условии хорошего питания. Остальные 8 невозможно синтезировать, а только получить извне:

  • валин - поддерживает обмен соединений азота. Молочные продукты, а также грибы;
  • лизин - главное предназначение - усвоение, распределение кальция в организме. Мясо, а также хлебобулочные изделия;
  • фенилаланин - поддерживает деятельность мозга и циркуляцию крови. Присутствует в говядине, сое и твороге;
  • триптофан - один из ключевых компонентов сосудистой системы. Овес, бананы и финики;
  • треонин - играет роль в иммунной системе, регулирует работу печени. Молочные продукты, куриные яйца;
  • метионин - укрепление сердечной мышцы. Присутствует в бобах, яйцах;
  • лейцин - способствует восстановление костей и мышц. В достатке содержится в орехах и рыбе;
  • изолейцин - определяет уровень сахара в крови. Семена, печень, курица.

При дефиците одной кислоты организм не в состоянии синтезировать необходимый белок, а значит, вынужден отбирать необходимые элементы из других белков. Это приводит к общему дисбалансу , что перерастает в заболевание, а в детском возрасте вызывает умственные и физические недостатки.

Органические кислоты относятся к обязательным компонентам химического состава растительного сырья. Они содержатся во всех тканях и органах растений: для запасающих органов – плодов, корневищ и др. – характерно преобладание свободных органических кислот, в вегетативных органах – траве, почках, листьях – они встречаются, как правило, в виде кислых солей.

В обмене веществ растительной клетки кислотам принадлежит исключительно важная роль: будучи в основном продуктами превращения сахаров, они участвуют в синтезе аминокислот, алкалоидов и многих других соединений. Ряд растений обладает способностью к синтезу и накоплению органических кислот и может служить сырьем для их промышленного получения.

Перечень органических кислот, входящих в состав растительного сырья, достаточно широк, при этом наиболее распространёнными являются уксусная кислота, участвующая в обмене веществ всех без исключения растений в виде ацетил-КоА , а также яблочная, лимонная, щавелевая и янтарная кислоты, относящиеся к первичным продуктам фотосинтеза и принимающие участие в метаболизме растительной клетки.

Яблочная кислота (COOH–CH 2 –CH(OH)–COOH)) является наиболее лабильной, она участвует в процессах фотосинтеза, подвергаясь быстрым изменениям и являясь промежуточным продуктом при биосинтезе многих соединений. Эта кислота известна в трёх стереоизомерных формах, но в растениях встречается только L-изомер.

Яблочная кислота является преобладающей в яблоках (0,4…0,7 г/100 г продукта), большинстве видов косточковых; ею богаты красноплодная рябина, садовая земляника (1,2 г/100 г), клюква и крыжовник (1,0 г/100 г), малина (1,4 г/100 г) и облепиха (2,0 г/100 г), зеленые ягоды винограда (0,7…1,5 г/100 г), достаточно высокое содержание отмечается в сливе (3,5 % от а.с.в.) и ягодах барбариса (до
6 % от а.с.в.), выявлено присутствие яблочной кислоты в составе кислот айвы (0,5 г/100 г) и персиков (0,2 г/100 г), плодов цитрусовых, шиповника, ягод лимонника и черники, цветков календулы.

В виде малатов яблочная кислота накапливается в листьях мать-и-мачехи, чёрной смородины и подорожника (в последнем 0,2…0,5 %), траве хвоща и других видах сырья; особенно значительно в листьях сем. Толстянковых. Свободная кислота и её соли входят и в состав сопутствующих веществ ФАВ большинства видов сырья, заготавливаемого корневищами и корнями.

На примере винограда показано, что растения, произрастающие в северных районах, накапливают бóльшие количества яблочной кислоты, чем те же культуры, выращиваемые южнее. Данный факт находит объяснение в том, что при более высоких среднесуточных температурах яблочная кислота в плодах и зелёной массе растений расходуется на окисление быстрее винной, вследствие чего её доля в составе кислот снижается.

Лимонная кислота и ее соли цитраты :

Встречаются в растительном сырье не менее часто. Ими наиболее богаты плоды цитрусовых (лимон – 5,5…5,7 г/100 г), из которых преимущественно лимонную кислоту выделяли в промышленных масштабах до 1922 г.; гранаты, ягоды смородины (2,0…10,0 г/100 г), лимонника, малины, клюквы (1,1…3,0 г/100 г), в меньшем количестве лимонная кислота содержится в ягодах крыжовника (0,3 г/100 г) и земляники (0,1 г/100 г), айве (0,3 г/100 г), персиках (0,1…0,2 г/100 г) и яблоках (0,1 г/100 г), плодах шиповника, красноплодной рябины и боярышника; из травянистого сырья лимонная кислота идентифицирована в листьях черники, чёрной смородины, чистотела, подорожника (1,2…1,5 %) и некоторых других.

Щавелевая кислота (HOOC–COOH) является одним из побочных продуктов жизнедеятельности растительной клетки, поэтому химически наименее активна и накапливается в растительном сырье в основном в виде кальциевой соли (оксалаты – кристаллы различной, специфичной для вида растения, формы; этот признак используется при идентификации лекарственно-технического сырья), накапливаясь преимущественно в сочном травянистом сырье: листьях щавеля (оксалата кальция 0,56…0,93 г/100 г) и ревеня (2,37 г/100 г), траве хвоща, сочных чешуях луковичных растений, коре деревьев и т.п. Плодово-ягодная продукция щавелевой кислотой не богата (до 0,01…0,02 г/100 г), незначительные количества обнаружены в ягодах лимонника (0,06 г/100 г) и ягодах сем. Брусничных.

Физиологически значимое содержание янтарной кислоты (HOOC–CH 2 –CH 2 –COOH) является характерным для ягод крыжовника, лимонника, красной смородины, черники и куманики, черешков ревеня. В достаточно высоких количествах (0,01…0,02 г/100 г) эта кислота и её соли сукцинаты содержатся в незрелых плодах и ягодах, например, вишне, черешне, сливе, яблоках, винограде. В числе других видов сырья, в кислотном комплексе которых выделены свободная янтарная кислота и её соли, можно отметить ягоды боярышника, корневища и корни родиолы, листья подорожника (0,2…0,5 %), горькой полыни, беладонны, мака, кукурузы.



Реже в растительном сырье встречается винная кислота (COOH–CH(OH)–CH(OH)–COOH, D-изомер): в ягодах (зелёные – 0,8…1,3 г/100 г, вызревшие – от 0,2 до 1,0 г/100 г), стеблях и листьях винограда (до 3,7 % на сухую массу), красноплодной рябине, плодах боярышника, сливы и граната; ягодах малины, крыжовника, смородины, лимонника и брусники. В винограде наряду с D-кислотой содержатся пировиноградная кислота (следы) и неактивный DL-изомер винной кислоты – виноградная кислота. Кроме названных видов сырья, винная кислота входит в состав кислот листьев брусники, мать-и-мачехи, подорожника и т.д.

От содержания и состава органических кислот зависит не только вкус растительного сырья, но в какой-то степени и его ароматические свойства, что определяется наличием в летучей фракции свободных муравьиной, уксусной, пропионовой, масляной, каприловой и валериановой кислот и их эфиров. Названные кислоты обуславливают специфические оттенки аромата лекарственно-технического сырья, преимущественно растений-эфироносов, все они обладают резким, острым запахом. Так, муравьиная кислота (HCOOH) входит в состав органических кислот яблок, толокнянки, калины, шишкоягод можжевельника, ягод малины (1,76 мг/100 г), стеблей и листьев крапивы, травы тысячелистника и многих других видов сырья; в свободном состоянии она чаще встречается в зелёных листьях, считается, что она относится к промежуточным продуктам фотосинтеза. Уксусная кислота (CH 3 –COOH) как в свободном состоянии, так и в составе сложных эфиров со спиртами, участвует в формировании вкусоароматических характеристик тех же калины и можжевельника, ягод брусники
(следы), листьев мяты перечной, травы полыни и лесной земля-
ники, тысячелистника, корневищ и корней валерианы, девясила и
дягиля и т.д. Наличие валериановой и/или изовалериановой кислот ((CH 3) 2 CH–CH 2 –COOH) установлено для листьев мяты и лавра благородного, травы иссопа, полыни и тысячелистника, лесной земляники, плодов калины, персиков и плодов какао, корневищ и корней валерианы и дягиля. В химический состав валерианы, кроме уже упомянутых органических кислот, входит масляная (CH 3 –CH 2 –CH 2 –COOH); масляная кислота входит также в состав цветков ромашки аптечной.

Каприловая кислота обуславливает аромат персиков:

Пропионовая кислота (CH 3 –CH 2 –COOH) из всего многообразия растительного сырья найдена только в цветочных корзинках тысячелистника. Как видно из вышесказанного, для многих видов растительного сырья – источников эфирных масел – является характерным присутствие сразу всех летучих кислот.

Сложные эфиры органических кислот обуславливают характерный аромат растительного сырья: октилацетат – апельсина, метилбутират – абрикоса, изоамиловый эфир изовалериановой кислоты – яблок, себацинацетат – шишкоягод можжевельника обыкновенного, эфир борнеола с валериановой кислотой – корневищ и корней валерианы лекарственной и т.д.

Некоторые из органических кислот встречаются в заготавливаемом сырье значительно реже, в ряде случаев представляя определённый интерес как идентификационный признак. К таким кислотам следует отнести ангеликовую – корневища и корни дягеля; аконитовую (COOH–CH=C(COOH)–CH 2 –COOH) – трава хвоща, дельфиниума, горицвета и тысячелистника; малоновую (COOH–СH 2 –COOH) – лист подорожника, сок клёна, ткани растений сем. Бобовых; фумаровую (COOH–CH=CH–COOH), считающуюся генетически связанной с янтарной и яблочной кислотами и из числа высших растений вы-явленную только в составе растений сем. Макоцветных, в ягодах
барбариса, клюквы и эрики сизой, плодах айвы; сорбиновую
(CH 3 –CH=CH–CH=CH–COOH), несомненно связанную со спиртом, сорбитом и обнаруженную в ягодах красноплодной рябины, брусничных; DL-молочную (CH 3 –CH(OH)–COOH) – листья малины и агавы, ягоды черники и куманики; глиоксалевую (CHO–COOH) – зелёные листья и невызревшие ягоды винограда, ягоды клюквы, плоды кизила
и т.д.

Особо необходимо сказать о кетокислотах, являющихся связующим звеном в обмене углеводов и белков и обладающих высокой физиологической активностью. Для растений является не характерным накопление кетокислот в значительных количествах, суммарное содержание пировиноградной (CH 3 –CO–OOH), α-кетоглутаровой (COOH–CH 2 –CH 2 –CO–COOH), щавелевоуксусной (COOH–CH 2 –CO–COOH) и щавелевоянтарной (COOH–CH 2 –CH(COOH)–CO–COOH) кислот обычно не превышает нескольких мг на 100 г сырья. Максимальное содержание кетокислот обнаружено в листьях и ягодах брусники (0,13 мг/100 г пировиноградной; 0,22 мг/100 г α-кетоглутаровой; 0,025 мг/100 г щавелевоуксусной), листьях земляники (0,87 мг/100 г пировиноградной; 28,4 мг/100 г α-кетоглутаровой; 0,65 мг/100 г
щавелевоуксусной) и листьях мяты (0,11 мг/100 г пировиноградной и 1,9 мг/100 г кетоглутаровой).

Кислоты ряда циклогексана – хинная (кофе, плоды айвы, ирги, сливы и персиков, ягоды актинидии, клюквы и черники, листья брусники и т.д.) и шикимовая , обнаруженная в плодах аниса звёздчатого и ягодах клюквы, не только являются специфичными, но и их принято выделять в отдельную подгруппу ФАВ, как играющие особо важную роль в биосинтезе ароматических аминокислот (шикимовая – предшественник фенилаланина и тирозина), коричных кислот и некоторых других веществ.

Кислоты участвуют в формировании индивидуального вкуса отдельных видов растительного сырья. Каждая кислота имеет свой специфический вкус и порог ощущения: у яблочной и лимонной кислот вкус чистый, невяжущий; для винной кислоты характерен кислый вяжущий вкус; у янтарной кислоты вкус неприятный и т.д. Интенсивность кислого вкуса сырья определяется составом и количественным соотношением индивидуальных кислот, соотношением свободных и связанных кислот, составом сопутствующих веществ (сахара маскируют кислый вкус, дубильные вещества усиливают и делают вяжущим).

Для объективной оценки вкуса растительного сырья принят так называемый сахарокислотный коэффициент, расчет которого основан на соотношении кислот и сахаров (с учетом сладости последних):

,

где – содержание глюкозы, %;

– содержание фруктозы, %;

– содержание сахарозы, %;

– содержание кислоты, %.

Кислотность выражают в процентах на доминирующую кислоту.

Физиологически органические кислоты благоприятно влияют на процессы пищеварения, снижая рН среды и способствуя созданию определенного состава микрофлоры, тормозя процессы гниения в желудочно-кишечном тракте. Кислоты фенольной природы обладают бактерицидным действием. Усвояемые органические кислоты принимают участие и в формировании энергетической ценности продуктов питания и напитков с их участием: яблочная кислота – 2,4 ккал/г, лимонная – 2,5 ккал/г, молочная – 3,6 ккал/г и т.д. Винная кислота организмом человека не усваивается.

Некоторые органические кислоты участвуют в механизмах обменных процессов, отвечающих за контроль массы тела (например, гидроксилимонная кислота, ингибирующая цитрат лиазу в ферментной системе синтеза жирных кислот) – на этом свойстве базируется разработка БАД из лекарственно-технического растительного сырья, действие которых основано на угнетении синтеза жирных кислот из углеводов de novo . Янтарная кислота способствует улучшению энергетического обеспечения клеток головного мозга, миокарда, печени, почек; оказывает антиоксидантное и антигипоксическое действие (механизм действия связан с увеличением синтеза АТФ, торможением гликолиза и активацией аэробных процессов в клетках, усилением глюконеогенеза). Кроме того, янтарная кислота способствует стабилизации клеточных мембран, что предотвращает потерю ферментов и обеспечивает функционирование механизмов дезинтоксикации в клетках. На фоне флавоноидов и сапонинов (солодки, например) янтарная кислота проявляет противовоспалительное, дезинтоксикационное и спазмолитическое действие.

С гигиенических и токсикологических позиций отмечается способность органических кислот влиять на минеральный обмен. Так, щавелевая кислота интенсивно связывает кальций, а лимонная – напротив, способствует его усвоению организмом человека. Названные свойства органических кислот необходимо учитывать при составлении рецептур продуктов питания и напитков с ориентацией последних на определенные категории потребителей.

На основании обобщённых данных, полученных с помощью эпидемиологических методов, органические кислоты введены в перечень обязательных компонентов оптимального рациона питания. Адекватный уровень потребления суммы органических кислот (ангеликовой, винной, гликолевой, глиоксалевой, лимонной, изолимонной, яблочной, фумаровой, коричной и пара -кумаровой) для современного человека, жизнедеятельность которого характеризуется пониженными энергозатратами (на уровне 2300 ккал в сутки), составляет 500 мг/сут; верхний допустимый уровень потребления – 1500 мг/сут. Особо оговаривается адекватный уровень потребления валериановой кислоты –
2 мг/сут – и янтарной кислоты – 200 мг/сут (верхние допустимые уровни потребления 5 мг и 500 мг соответственно).

Основное пищевое применение находят лимонная, винная и молочная кислоты, преимущественно в производстве кондитерских изделий, безалкогольных напитков, консервов и пищевых концентратов. Свободные органические кислоты и их соли находят и медицинское применение: уксусная кислота широко применяется в производстве фармацевтической продукции (многие препараты являются более растворимыми, а соответственно, и более усвояемыми в виде ацетатов); янтарная кислота находит самостоятельное применение в качестве фармпрепарата; соли яблочной кислоты (например, яблочнокислое железо) используются в лечении малокровия; натриевая соль лимонной кислоты находит применение в качестве консерванта при переливании крови, лимоннокислая медь иногда используется в лечении заболеваний глаз; отходы производства виноградных вин – кислый виннокислый калий, «винный камень» (кремотартар) – находят применение в медицине и пищевой промышленности для получения кристаллической винной кислоты.

Список литературы к разделу 3

1. Гребинский, С. Биохимия растений / С. Гребинский. – Львов: Изд-во Львовского ун-та, 1967. – 272 с.

2. Щербаков, В.Г. Биохимия: учебник / В.Г. Щербаков, В.Г. Лобанов, Т.Н. Прудникова, А.Д. Минакова. – СПб.: ГИОРД, 2003. – 440 с.

3. Марх, А.Т. Биохимия консервирования плодов и овощей / А.Т. Марх. – М.: Пищевая промышленность, 1973. – 372 с.

4. Цапалова, И.Э. Экспертиза дикорастущих плодов, ягод и травянистых растений: учебно-справочное пособие / И.Э. Цапалова, М.Д. Губина, В.М. Позняковский. – Новосибирск: Изд-во Новосибирского ун-та, 2000. – 180 с.

5. Плотникова, Т.В. Экспертиза свежих плодов и овощей / Т.В. Плотникова, В.М. Позняковский, Т.В. Ларина. – Новосибирск: Сиб. универ. изд-во, 2001. – 302 с.

6. Химический состав пищевых продуктов / под ред. И.М. Скурихина и М.Н. Волгарева. – М.: Агропромиздат, 1987. – 223 с.

7. Муравьёва, Д.А. Фармакогнозия / Д.А. Муравьёва. – М.: Медицина, 1981. – 656 с.

8. Родопуло, А.К. Биохимия виноделия / А.К. Родопуло. – М.: Пищевая промышленность, 1971. – 374 с.

9. Карклиньш, Р.Л. Биосинтез органических кислот / Р.Л. Карклиньш, А.К. Пробок. – Рига: Зинатне, 1972. – 200 с.

10. Домарецкий, В.А. Производство концентратов, экстрактов и безалкогольных напитков: справочник / В.А. Домарецкий. – Киев: Урожай, 1990. – 245 с.

11. Челнакова, Н.Г. Пищевые продукты для коррекции массы тела: новые технологии, оценка качества и эффективности: монография / Н.Г. Челнакова, Е.О. Ермолаева. – М.; Кемерово: ИО «Российские университеты»; Кузбассвузиздат – АСТИ, 2006. – 214 с.

12. Позняковский, В.М. Гигиенические основы питания, качество и безопасность пищевых продуктов: учебник / В.М. Поз-няковский. – Нсб.: Сиб. унив. изд-во, 2004. – 556 с.

13. Производство пищевых кислот / под общ. ред. Е.И. Жу-равлевой. – М.: Пищепромиздат, 1953. – 236 с.

14. Смирнов, В.А. Пищевые кислоты / В.А. Смирнов. – М.: Легкая и пищевая промышленность, 1983. – 264 с.

Карбоновая кислота - представитель предельных одноосновных кислот.

Карбоновыми кислотами называются органические вещества, в состав которых входит карбоксильная группа или в упрощенной записи - СООН. Карбоксильная группа состоит из соединенных карбонильной и гидроксильной групп, что определило ее название.

В карбоновых кислотах карбоксильная группа соединена с углеводородным радикалом R, поэтому в общем виде формулу карбоновой кислоты можно записать так: R-СООН.

В карбоновых кислотах карбоксильная группа может быть соединена с различными углеводородными радикалами ~- предельными, непредельными, ароматическими. В связи с этим выделяют предельные, непредельные и ароматические карбоновые кислоты, например:

В зависимости от числа карбоксильных групп, содержащихся в молекулах карбоновых кислот, различают одноосновные и двухосновные кислоты, например:

атом углерод кислота спирт липиды

Одноосновные кислоты называют также монокарбоновыми, а двухосновные - дикарбоновыми кислотами.

Общая формула членов гомологического ряда предельных одноосновных карболовых кислот СnН2n-1СООН, где п = 0, 1, 2, 3..

Номенклатура.

Названия карбоновых кислот по заместительной номенклатуре строят из названия соответствующего алкана с добавлением окончания -овая и слова «кислота». Если углеродная цепь разветвленная, то в начале названия кислоты записывают заместитель с указанием его положения в цепи Нумерацию атомов углерода в цепи начинают с углерода карбоксильной группы.

Некоторые предельные одноосновные кислоты:

Для некоторых членов гомологического ряда предельных карбоновых кислот применяют тривиальные названия, приведены формулы некоторых предельных одноосновных кислот и их названия по заместительной номенклатуре и тривиальные названия.

Изомеры. Начиная с бутановой кислоты С3Н7СООН9 члены гомологического ряда предельных одноосновных кислот имеют изомеры. Их изомерия обусловлена разветвленностыо углеродной цепи углеводородных радикалов. Так, бутановая кислота имеет следующие два изомера (в скобках записано тривиальное название).

Формуле С 4 Н 9 СООН соответствуют четыре изомерные карбоновые кислоты:

Свойства, Кислоты гомологического ряда с нормальным -v строением от муравьиной до> С 8 Н 17 СООН (нонановой кислоты) при обычных условиях ~ бесцветные жидкости, имеющие резкий запах. Высшие члены ряда, начиная с С. 9 Н 19 СООН, - твердые вещества. Муравьиная, уксусная и продионовая кислоты хорошо растворимы в воде, смешиваются с ней в любых отношениях. Другие жидкие кислоты ограниченно растворимы в воде. Твердые кислоты в воде практически нерастворимы.

Особенности химических свойств карбоновых кислот обусловлены сильным взаимным влиянием карбонильной С-О и гидроксильной О-Н групп.

В карбоксильной группе связь между углеродом и карбонильным кислородом сильнополярна.. Однако положительный заряд на атоме углерода частично уменьшается в результате притяжения электронов атома кислорода гидроксильной группы. Поэтому в карбоновых кислотах карбонильный углерод менее склонён к взаимодействию с нуклеофильными частицами чем в альдегидах и кетонах.

С другой стороны, под влиянием карбонильной группы усиливается полярность связи О-Н за счет смещения электронной плотности от кислорода к атому углерода. Все указанные особенности* карбоксильной группы -можно проиллюстрировать следующей схемой:

Рассмотренный характер электронного строения карбоксильной группы обусловливает относительную легкость отрыва водорода этой группы. Поэтому у карбоновых кислот хорошо выражены кислотные свойства. F безводном" состоянии и особенно в водных растворах карбоновые кислоты диссоциируют на ионы;

Кислый характер растворов карбоновых кислот можно установить с помощью индикаторов. Карбоновые кислоты являются слабыми электролитами, причем сила карбоновых кислот уменьшается с увеличением молекулярной массы кислоты.

Наиболее часто встречающиеся жирные кислоты:

· пальмитиновая CH 3 (CH 2)14COOH,

· стеариновая СН 3 (СН 2)16СООН,

· олеиновая СН 3 (СН 2) 7 СН=СН(СН 2)7СООН,

· линолевая СНз(СН2) 4 (СН=СНСН2)2(СН2) 6 СООН,

· линоленовая СН 3 СН 2 (СН=СНСН 2)3(СН2)6СООН,

· арахидоноваяСН 3 (СН 2)4(СН=СНСН 2)4(СН2)2СООН,

· арахиновая СН 3 (СН 2)18СООН и некоторые другие кислоты.

Муравьиная кислота. Это легкоподвижная, бесцветная жидкость с исключительно резким запахом, которая смешивается с водой в любых пропорциях, очень едкая, вызывающая волдыри на коже. Она применяется в качестве консерванта. Уксусная кислота. Обладает теми же свойствами, что и муравьиная. Концентрированная уксусная кислота затвердевает при 17°С, превращаясь в массу, похожую на лед. Ее используют при изготовлении уксусно-кислого глинозема, в качестве добавки в лосьон для бритья, а также при производстве ароматических веществ и растворителей (смывка для лака - амилацетат). Бензойная кислота. Имеет кристаллические иголочки без цвета и запаха. Она плохо растворяется в воде и легко - в этаноле и эфире. Это известное средство для консервации. Обычно применяется в виде натриевой соли как противомикробное и фунгицидное средство.

Молочная кислота. В концентрированном виде обладает кератолитическим действием. В увлажняющих кремах используют натриевую соль молочной кислоты, которая благодаря своим гигроскопическим свойствам оказывает хорошее увлажняющее воздействие, а также отбеливает кожу. Винная кислота. Состоит из бесцветных прозрачных кристаллов или представляет собой кристаллический порошок с приятным кислым вкусом. Она легко растворяется в воде и этаноле. Ее используют в соли для ванн, а также в ополаскивателях для волос после применения лака.

Тиомолочная кислота. Это молочная кислота, в которой один атом кислорода замещен атомом серы.

Масляная кислота. Это жидкость без цвета и запаха, растворимая только в органических растворителях (бензине, бензоле, тетрахлоруглероде). В свободном виде масляная кислота в косметике не употребляется, она является составляющим элементом мыла и шампуней.

Сорбиновая кислота. Эта твердая, белая, многократно ненасыщенная жирная кислота, трудно растворимая в холодной воде и легка растворимая в спирте или эфире. Ее соли и эфиры абсолютно нетоксичны, они используются как консерванты в продуктах питания и косметических средствах. Линолевая, линоленовая, арахидоновая кислаты. Эссенциальные (незаменимые) ненасыщенные жирные кислоты, которые не синтезируются в организме. Комплекс этих кислот называют витамином Г. Их физиалогическая роль заключается в следующем: - нормализация уровня холестерина в крови; - участие в синтезе простангландинов; - оптимизация функций биологических мембран; - участие в липидном обмене кожи. Они входят в состав эпидермальных липидов, образуя строго организованные липидные структуры (пласты) в роговом слое эпидермиса, которые обеспечивают его барьерные функции. При недостатке незаменимых жирных кислот происходит их замена на насыщенные. Например, замена линолевой кислоты на пальмитинавую приводит к дезорганизаци липидных пластов, в эпидермисе образуются участки, лишенные липидов и, следовательно, проницаемые для микраарганизмов и химических агентов. Эссенциальные жирные кислоты содержатся в масле семян кукурузы, пщеницы, сои, льна, кунжуга, арахиса, миндаля, подсолнечника.

Органические кислоты - соединения алифатического или ароматического ряда, характеризующиеся наличием в молекуле одной или нескольких карбоксильных групп. Они широко распространены в растениях, накапливаются в значительных количествах, разнообразны по своей структуре и биологической роли. Алифатические органические кислоты подразделяются на:

  • летучие (муравьиная, уксусная, масляная),
  • нелетучие (гликолевая, яблочная, лимонная, щавелевая, молочная, пировиноградная, малоновая, янтарная, щавелевоуксусная, винная, фумаровая, изолимонная, цис-аконитовая, изовалериановая).

Ароматические кислоты - бензойная, салициловая, галловая, коричная, кофейная, кумаровая, хлорогеновая.

Органические кислоты находятся в растениях главным образом в виде солей, эфиров, димеров и т.п., а также в свободном виде, образуя буферные системы в клеточном соке растений.

В различных органах растений органические кислоты распределены неравномерно: в плодах и ягодах преобладают свободные кислоты, в листьях содержатся главным образом связанные кислоты.

Большое значение в жизни растений имеют уроновые кислоты, образующиеся при окислении спиртовой группы у шестого углеродного атома гексоз (см. Сырье, содержащее полисахариды). Эти кислоты принимают участие в синтезе полиуронидов - высокомолекулярных соединений, построенных из остатков уроновых кислот (глюкуроновой, галактуроновой, маннуроновой и др.). К полиуронидам в растительном мире относятся пектиновые вещества, альгиновая кислота, камеди, некоторые слизи.

Количественное содержание органических кислот в растениях подвержено суточным и сезонным, а также видовым и сортовым изменениям, причем различия касаются не только суммарного содержания органических кислот, но и их качественного состава и соотношения отдельных кислот. Значительное влияние на их накопление оказывают широта местности, удобрения, поливы, фаза развития растений, степень зрелости плодов, сроки хранения, температура. В незрелых плодах и стареющих листьях накапливаются главным образом яблочная, лимонная, винная кислоты. В старых листьях листовых овощей (щавель, шпинат, ревень) преобладает щавелевая кислота, в молодых - яблочная и лимонная. Преимущественное накопление отдельных органических кислот может служить систематическим признаком.

Органические кислоты и их соли хорошо растворимы в воде, спирте или эфире. Для выделения органических кислот из растительного сырья с целью качественного исследования и количественного определения наиболее приемлемым способом является их экстракция эфиром при подкислении минеральными кислотами с последующим титриметрическим определением.

Многие органические кислоты являются фармакологически активными веществами (лимонная, никотиновая, аскорбиновая), некоторые используются благодаря их биологической активности (фитогормоны, ауксины, гетероауксины и др.). Лимонная и яблочная кислоты широко используются в пищевой промышленности для изготовления фруктовых напитков и кондитерских изделий, натриевая соль лимонной кислоты, кроме того, - в качестве консерванта при переливании крови. Винная кислота применяется в медицине, а также при производстве фруктовых вод, для изготовления химических разрыхлителей теста, в текстильной промышленности при изготовлении протрав и красок, в радиотехнической промышленности. К объектам, накапливающим органические кислоты и имеющим медицинское значение, относятся плоды клюквы болотной, малины обыкновенной, земляники лесной, вишни.

В западноевропейской научной медицине эти растения применяются мало. Здесь сложился иной набор средств, содержащих органические кислоты и их производные. В частности, используется пульпа плодов тамаринда - Pulpa Tamarindorum (тамаринд индийский - Tamarindus indica L., сем. Бобовые - Fabaceae, подсем. Цезальпиниевые - Caesalpinioideae), обладающая легким противовоспалительным, освежающим, а также слабительным действием. Листья этого растения являются промышленным источником для получения винной кислоты.