Применение аналитической химии. Классификация методов аналитической химии

АНАЛИТИЧЕСКАЯ ХИМИЯ, наука об определении химического состава веществ и материалов и, в некоторой степени, химического строения соединений. Аналитическая химия развивает общие теоретические основы химического анализа, разрабатывает методы определения компонентов изучаемого образца, решает задачи анализа конкретных объектов. Основная цель аналитической химии - создание методов и средств, обеспечивающих, в зависимости от поставленной задачи, точность, высокую чувствительность, экспрессность и избирательность анализа. Разрабатываются и методы, позволяющие анализировать микрообъекты, проводить локальный анализ (в точке, на поверхности и так далее), анализ без разрушения образца, на расстоянии от него (дистанционный анализ), непрерывный анализ (например, в потоке), а также устанавливать, в виде какого химического соединения и в какой физической форме существует в образце определяемый компонент (вещественный химический анализ) и в состав какой фазы он входит (фазовый анализ). Важные тенденции развития аналитической химии- автоматизация анализов, особенно при контроле технологических процессов, и математизация, в частности широкое использование компьютеров.

Структура науки . Можно выделить три крупных направления аналитической химии: общие теоретические основы; разработка методов анализа; аналитическая химия отдельных объектов. В зависимости от цели анализа различают качественный химический анализ и количественный химический анализ. Задача первого - обнаружение и идентификация компонентов анализируемого образца, задача второго - определение их концентраций или масс. В зависимости от того, какие именно компоненты нужно обнаружить или определить, различают изотопный анализ, элементный анализ, структурно-групповой (в том числе функциональный) анализ, молекулярный анализ, вещественный анализ, фазовый анализ. По природе анализируемого объекта различают анализ неорганических и органических веществ, а также биологических объектов.

В теоретических основах аналитической химии существенное место занимает так называемая хемометрика, в том числе метрология химического анализа. Теория аналитической химии включает также учения об отборе и подготовке аналитических проб, о составлении схемы анализа и выборе методов, о принципах и путях автоматизации анализа, применения ЭВМ, а также принципы рационального использования результатов химического анализа. Особенность аналитической химии - изучение не общих, а индивидуальных, специфических свойств и характеристик объектов, что обеспечивает избирательность многих аналитических методов. Благодаря тесным связям с достижениями физики, математики, биологии и различных областей техники (это особенно касается методов анализа) аналитическая химия превращается в дисциплину на стыке наук. Часто используют и иные названия этой дисциплины - аналитика, аналитическая наука и др.

В аналитической химии различают методы разделения, определения (обнаружения) и гибридные методы анализа, обычно сочетающие методы первых двух групп. Методы определения удобно подразделять на химические методы анализа (гравиметрический анализ, титриметрический анализ, электрохимические методы анализа, кинетические методы анализа), физические методы анализа (спектроскопический, ядерно-физический и др.), биохимические методы анализа и биологический метод анализа. Химические методы основаны на химических реакциях (взаимодействие вещества с веществом), физические — на физических явлениях (взаимодействие вещества с излучениями, потоками энергии), биологические используют отклик организмов или их фрагментов на изменения в окружающей среде.

Практически все методы определения основаны на зависимости каких-либо доступных измерению свойств веществ от их состава. Поэтому важное направление аналитической химии - отыскание и изучение таких зависимостей с целью использования их для решения аналитических задач. При этом почти всегда необходимо найти уравнение связи между свойством и составом, разработать способы регистрации свойства (аналитического сигнала), устранить помехи со стороны других компонентов, исключить мешающее влияние различных факторов (например, флуктуации температуры). Величину аналитического сигнала переводят в единицы, характеризующие количество или концентрацию компонентов. Измеряемыми свойствами могут быть, например, масса, объём, поглощение света, сила тока.

Большое внимание уделяется теории методов анализа. Теория химических методов базируется на представлениях о нескольких основных типах химических реакций, широко используемых в анализе (кислотно-основной, окислительно-восстановительной, комплексообразования), и нескольких важных процессах (осаждения, растворения, экстракции). Внимание к этим вопросам обусловлено историей развития аналитической химии и практической значимостью соответствующих методов. Поскольку, однако, доля химических методов уменьшается, а доля физических, биохимических и биологических растёт, большое значение приобретает совершенствование теории методов последних групп и интегрирование теоретических аспектов отдельных методов в общей теории аналитической химии.

История развития . Испытания материалов проводились ещё в глубокой древности; например, руды исследовали с целью установления их пригодности для плавки, различные изделия - для определения содержания в них золота и серебра. Алхимики 14-16 века выполнили огромный объём экспериментальных работ по изучению свойств веществ, положив начало химическим методам анализа. В 16-17 веках (период ятрохимии) появились новые химические способы обнаружения веществ, основанные на реакциях в растворе (например, открытие ионов серебра по образованию осадка с хлорид-ионами). Родоначальником научной аналитической химии считают Р. Бойля, который ввёл понятие «химический анализ».

До середины 19 века аналитическая химия была основным разделом химии. В этот период были открыты многие химические элементы, выделены составные части некоторых природных веществ, установлены законы постоянства состава и кратных отношений, закон сохранения массы. Шведский химик и минералог Т. Бергман разработал схему систематического качественного анализа, активно использовал сероводород как аналитический реагент, предложил методы анализа в пламени с получением перлов. В 19 веке систематический качественный анализ усовершенствовали немецкие химики Г. Розе и К. Фрезениус. Этот же век ознаменовался огромными успехами в развитии количественного анализа. Был создан титриметрический метод (французский химик Ф. Декруазиль, Ж. Гей-Люссак), значительно усовершенствован гравиметрический анализ, разработаны методы анализа газов. Большое значение имело развитие методов элементного анализа органических соединений (Ю. Либих). В конце 19 века сложилась теория аналитической химии, в основу которой было положено учение о химическом равновесии в растворах с участием ионов (главным образом В. Оствальд). К этому времени преобладающее место в аналитической химии заняли методы анализа ионов в водных растворах.

В 20 веке разработаны методы микроанализа органических соединений (Ф. Прегль). Был предложен полярографический метод (Я. Гейровский, 1922). Появилось много физических методов, например масс-спектрометрический, рентгеновский, ядерно-физический. Большое значение имело открытие хроматографии (М. С. Цвет, 1903) и создание разных вариантов этого метода, в частности распределительной хроматографии (А. Мартин и Р. Синг, 1941).

В России и в СССР большое значение для аналитической химии имел учебник И. А. Меншуткина «Аналитическая химия» (выдержал 16 изданий). М. А. Ильинский и Л. А. Чугаев ввели в практику органические аналитические реагенты (конец 19 - начало 20 века), Н.А. Тананаев разработал капельный метод качественного анализа (одновременно с австрийским химиком Ф. Файглем, 1920-е годы). В 1938 Н.А. Измайлов и М. С. Шрайбер впервые описали тонкослойную хроматографию. Большой вклад российские учёные внесли в изучение комплексообразования и его аналитического использования (И. П. Алимарин, А. К. Бабко), в теорию действия органических аналитических реагентов, в развитие масс-спектромегрии, методов фотометрии, атомно-абсорбционной спектрометрии (Б. В. Львов), в аналитическую химию отдельных элементов, особенно редких и платиновых, и ряда объектов - веществ высокой чистоты, минерального сырья, металлов и сплавов.

Требования практики всегда стимулировали развитие аналитической химии. Так, в 1940-1970-х годах в связи с необходимостью анализа ядерных, полупроводниковых и других материалов высокой чистоты были созданы такие чувствительные методы, как радиоактивационный анализ, искровая масс-спектрометрия, химико-спектральный анализ, инверсионная вольтамперометрия, обеспечивающие определение до 10 -7 —10 -8 % примесей в чистых веществах, т. е. 1 часть примеси на 10-1000 миллиард частей основного вещества. Для развития чёрной металлургии, особенно в связи с переходом к скоростному конвертерному производству стали, решающее значение приобрела экспрессность анализа. Использование так называемых квантометров - фотоэлектрических приборов для многоэлементного оптического спектрального или рентгеновского анализа - позволяет проводить анализ в ходе плавки.

Необходимость анализа сложных смесей органических соединений обусловила интенсивное развитие газовой хроматографии, которая позволяет анализировать сложнейшие смеси, содержащие несколько десятков и даже сотен веществ. Аналитическая химия в значительной мере способствовала овладению энергией атомного ядра, изучению космоса и океана, развитию электроники, прогрессу биологических наук.

Предмет исследования . Важную роль играет развитие теории отбора проб анализируемых материалов; обычно вопросы пробоотбора решаются совместно со специалистами по изучаемым веществам (например, с геологами, металловедами). Аналитическая химия разрабатывает способы разложения проб - растворение, сплавление, спекание и пр., которые должны обеспечивать полное «вскрытие» образца и не допускать потерь определяемых компонентов и загрязнений извне. В задачи аналитической химии входит развитие техники таких общих операций анализа, как измерение объёмов, фильтрование, прокаливание. Одна из задач аналитической химии - определение направлений развития аналитического приборостроения, создание новых схем и конструкций приборов (что чаще всего служит завершающей стадией разработки метода анализа), а также синтез новых аналитических реактивов.

Для количественного анализа очень важны метрологические характеристики методов и приборов. В связи с этим аналитическая химия изучает проблемы градуировки, изготовления и использования образцов сравнения (в том числе стандартных образцов) и других средств обеспечения правильности анализа. Существенное место занимает обработка результатов анализа, особенно компьютерная. Для оптимизации условий анализа используют теорию информации, теорию распознавания образов и другие разделы математики. Компьютеры применяют не только для обработки результатов, но и для управления приборами, учёта помех, градуировки, планирования эксперимента; существуют аналитические задачи, решаемые только с помощью компьютеров, например идентификация молекул органических соединений с использованием экспертных систем.

Аналитическая химия определяет общие подходы к выбору путей и методов анализа. Разрабатываются способы сопоставления методов, определяются условия их взаимозаменяемости и сочетания, принципы и пути автоматизации анализа. Для практического использования анализа необходима разработка представлений о его результате как показателе качества продукции, учение об экспрессном контроле технологических процессов, создание экономичных методов. Большое значение для аналитиков, работающих в различных отраслях экономики, имеют унификация и стандартизация методов. Разрабатывается теория оптимизации количества информации, необходимой для решения аналитических задач.

Методы анализа . В зависимости от массы или объёма анализируемого образца методы разделения и определения иногда подразделяют на макро-, микро- и ультрамикрометоды.

К разделению смесей обычно прибегают в тех случаях, когда методы прямого определения или обнаружения не позволяют получить правильный результат из-за мешающего влияния других компонентов образца. Особенно важно так называемое относительное концентрирование отделение малых количеств определяемых компонентов от значительно больших количеств основных компонентов пробы. Разделение смесей может базироваться на различии в термодинамических, или равновесных, характеристиках компонентов (константы обмена ионов, константы устойчивости комплексов) или кинетических параметрах. Для разделения применяют главным образом хроматографию, экстракцию, осаждение, дистилляцию, а также электрохимические методы, например электроосаждение. Методы определения - основная группа методов аналитической химии. В основе методов количественного анализа лежит зависимость какого-либо доступного измерению свойства, чаще всего физического, от состава образца. Эта зависимость должна описываться определённым и известным образом. Быстро развиваются гибридные методы анализа, объединяющие разделение и определение. Например, газовая хроматография с различными детекторами - важнейший метод анализа сложных смесей органических соединений. Для анализа смесей труднолетучих и термически нестойких соединений более удобна высокоэффективная жидкостная хроматография.

Для анализа необходимы разнообразные методы, поскольку каждый из них имеет свои достоинства и ограничения. Так, чрезвычайно чувствительные радиоактивационные и масс-спектральные методы требуют сложной и дорогостоящей аппаратуры. Простые, доступные и очень чувствительные кинетические методы не всегда обеспечивают нужную воспроизводимость результатов. При оценке и сопоставлении методов, при выборе их для решения конкретных задач принимаются во внимание многих факторы: метрологические параметры, сфера возможного использования, наличие аппаратуры, квалификация аналитика, традиции и др. Важнейшие среди этих факторов такие метрологические параметры, как предел обнаружения или диапазон концентраций (количеств), в котором метод даёт надёжные результаты, и точность метода, т. е. правильность и воспроизводимость результатов. В ряде случаев большое значение имеют «многокомпонентные» методы, позволяющие определять сразу большое число компонентов, например атомно-эмиссионный и рентгеновский спектральный анализ, хроматография. Роль таких методов возрастает. При прочих равных условиях предпочитают методы прямого анализа, т. е. не связанного с химической подготовкой пробы; однако часто такая подготовка необходима. Например, предварительное концентрирование исследуемого компонента позволяет определять меньшие его концентрации, устранять трудности, связанные с негомогенным распределением компонента в пробе и отсутствием образцов сравнения.

Особое место занимают методы локального анализа. Существенную роль среди них играют рентгеноспектральный микроанализ (электронный зонд), масс-спектрометрия вторичных ионов, оже-спектроскопия и другие физические методы. Они имеют большое значение, в частности при анализе поверхностных слоёв твёрдых материалов или включений в горных породах.

Специфическую группу составляют методы элементного анализа органических соединений. Органическое вещество тем или иным способом разлагают, а его компоненты в виде простейших неорганических соединений (СО 2 , Н 2 О, NН 3 и др.) определяют обычными методами. Применение газовой хроматографии позволило автоматизировать элементный анализ; для этого выпускаются С-, Н-, N-, S-анализаторы и другие приборы-автоматы. Анализ органических соединений по функциональным группам (функциональный анализ) выполняется различными химическими, электрохимическими, спектральными (ЯМР или ИК-спектроскопия) или хроматографическими методами.

При фазовом анализе, т. е. определении химических соединений, образующих отдельные фазы, последние предварительно выделяют, например с помощью избирательного растворителя, а затем полученные растворы анализируют обычными методами; весьма перспективны физические методы фазового анализа без предварительного разделения фаз.

Практическое значение . Химический анализ обеспечивает контроль многих технологических процессов и качества продукции в различных отраслях промышленности, играет огромную роль при поиске и разведке полезных ископаемых, в добывающей промышленности. С помощью химического анализа контролируется чистота окружающей среды (почвы, воды и воздуха). Достижения аналитической химии используют в различных отраслях науки и техники: атомной энергетике, электронике, океанологии, биологии, медицине, криминалистике, археологии, космических исследованиях. Велико экономическое значение химического анализа. Так, точное определение легирующих добавок в металлургии позволяет экономить ценные металлы. Переход на непрерывный автоматический анализ в медицинской и агрохимической лабораториях даёт возможность резко увеличить скорость анализов (крови, мочи, вытяжек из почв и так далее) и уменьшить численность сотрудников лабораторий.

Лит.: Основы аналитической химии: В 2 кн./ Под редакцией Ю. А. Золотова. М., 2002; Аналитическая химия: В 2 т. М., 2003-2004.

Инженеры-экологи должны знать химический состав сырья, продуктов и отходов производства и окружающей среды - воздуха, воды и почвы; важно выявить вредные вещества и определить их концентрацию. Эту задачу решает аналитическая химия - наука об определении химического состава веществ.

Задачи аналитической химии решаются главным образом физико-химическими методами анализа, которые, называют также инструментальными. Они используют измерение какого-либо физического или физико-химического свойства вещества для определения его состава. Он включает также разделы, посвящённые методам разделения и очистки веществ.

Цель данного курса лекций - ознакомление с принципами инструментальных методов анализа, чтобы ориентироваться в их возможностях и на этой основе ставить конкретные задачи специалистам - химикам и понимать смысл полученных результатов анализа.

Литература

    Алесковский В.Б. и др. Физико-химические методы анализа. Л-д, "Химия", 1988 г.

    Ю.С.Ляликов. Физико-химические методы анализа. М.,изд-во "Химия", 1974 г.

    Васильев В.П. Теоретические основы физико-химических методов анализа.М., Высшая школа, 1979 г.

    А.Д.Зимон, Н.Ф.Лещенко. Коллоидная химия. М., "Агар", 2001 г.

    А.И.Мишустин, К.Ф.Белоусова. Коллоидная химия (Методическое пособие). Изд-во МИХМ, 1990 г.

Первые две книги являются учебниками для студентов-химиков и поэтому достаточно сложные для вас. Это делает данные лекции весьма полезными. Однако можно читать отдельные главы.

К сожалению, для данного курса администрация пока не выделила отдельного зачёта, поэтому материал входит в общий экзамен, вместе с курсом физической химии.

2. Классификация методов анализа

Различают качественный и количественный анализ. Первый определяет наличие тех или иных компонентов, второй - их количественное содержание. Методы анализа подразделяются на химические и физико-химические. В данной лекции рассмотрим только химические методы, которые основаны на превращении анализируемого вещества в соединения, обладающие определенными свойствами.

При качественном анализе неорганических соединений исследуемый образец переводят в жидкое состояние растворением в воде или растворе кислоты или щёлочи, что позволяет обнаруживать элементы в форме катионов и анионов. Например, ионы Cu 2+ можно определить по образованию комплексного иона 2+ ярко-синего цвета.

Качественный анализ подразделяют на дробный и систематический. Дробный анализ- обнаружение нескольких ионов в смеси с приблизительно известным составом.

Систематический анализ - это полный анализ по определенной методике последовательного обнаружения индивидуальных ионов. Выделяют отдельные группы ионов со сходными свойствами посредством групповых реагентов, затем группы ионов подразделяют на подгруппы, а те, в свою очередь, - на отдельные ионы, которые и обнаруживают при помощи т.н. аналитических реакций. Это реакции с внешним эффектом - выпадением осадка, выделением газа, изменением цвета раствора.

Свойства аналитических реакций - специфичность, избирательность и чувствительность .

Специфичность позволяет обнаружить данный ион в присутствии других ионов по характерному признаку (цвет, запах и т.п.). Таких реакций сравнительно немного (например, реакция обнаружения иона NH 4 + действием на вещество щелочи при нагревании). Количественно специфичность реакции оценивается величиной предельного отношения, равного отношению концентраций определяемого иона и мешающих ионов. Например, капельная реакция на ион Ni 2+ действием диметилглиоксима в присутствии ионов Co 2+ удается при предельном отношении Ni 2+ к Co 2+ , равном 1:5000.

Избирательность (или селективность) реакции определяется тем, что сходный внешний эффект дают лишь несколько ионов. Bзбирательность тем больше, чем меньше число ионов, дающих сходный эффект.

Чувствительность реакции характеризуется пределом обнаружения или пределом разбавления. Например, предел обнаружения в микрокристаллоскопической реакции на ион Ca 2+ действием серной кислоты равен 0,04 мкг Ca 2+ в капле раствора.

Более сложная задача - анализ органических соединений. Углерод и водород определяют после сжигания пробы, регистрируя выделившийся углекислый газ и воду. Существуют ряд приемов для обнаружения других элементов.

Классификация методов анализа по количеству.

Компоненты подразделяют на основные (1 - 100% по массе), неосновные (0,01 - 1% по массе) и примесные или следовые (менее 0,01% по массе).

    В зависимости от массы и объема анализируемого образца различают макроанализ (0,5 - 1 г или 20 - 50 мл),

    полумикроанализ (0,1 - 0,01 г или 1,0 - 0,1 мл),

    микроанализ (10 -3 - 10 -6 г или 10 -1 - 10 -4 мл),

    ультрамикроанализ (10 -6 - 10 -9 г, или 10 -4 - 10 -6 мл),

    субмикроанализ (10 -9 - 10 -12 г или 10 -7 - 10 -10 мл).

Классификация по природе определяемых частиц:

1.изотопный (физический) - определяются изотопы

2. элементный или атомный - определяется набор химических элементов

3. молекулярный - определяется набор молекул, из которых состоит образец

4. структурно-групповой (промежуточный между атомным и молекулярным) - определяются функциональных группы в молекулах органических соединений.

5. фазовый - анализируются компоненты неоднородных объектов (например минералов).

Другие виды классификации анализа:

Валовой и локальный.

Деструктивный и не деструктивный.

Контактный и дистанционный.

Дискретный и непрерывный.

Важные характеристики аналитической процедуры - экспрессность метода (быстрота проведения анализа), стоимость анализа, возможность его автоматизации.

Курс физической и коллоидной химии, включающий физико-химические методы анализа и методы разделения и очистки, играет существенную роль при подготовке специалистов в области инженерной экологии. Основные разделы физической химии - химическая кинетика и химическая термодинамика - служат теоретической основой других разделов химии, а также химической технологии и методов разделения и очистки веществ. Измерения физико-химических свойств веществ лежат в основе многих современных инструментальных (физико-химических) методов анализа и контроля состояния окружающей среды. Поскольку большинство природных объектов являются коллоидными системами, необходимо изучить основы коллоидной химии.

Опасности загрязнения среды продуктами - вредными веществами могут быть существенно уменьшены тщательной очисткой продуктов. Химические методы очистки включают обработку реагентами, нейтрализующими вредные компоненты. Необходимо знать скорость и полноту протекания реакций, их зависимость от внешних условий, уметь рассчитать концентрацию реагентов, обеспечивающих необходимую степень очистки. Также широко применяются физико-химические методы очистки, включающие ректификацию, экстракцию, сорбцию, ионный обмен, хроматографию.

Изучение курса физической и коллоидной химии студентами экологических специальностей (№№) включает освоение теоретического (лекционного) курса, семинары по аналитической химии, включая физико-химические методы анализа, методы разделения и очистки, хроматографию и разделы коллоидной химии, выполнение лабораторных работ и практических занятий, а также самостоятельную работу, включающую выполнение трёх домашних заданий. В ходе лабораторных и практических работ студенты приобретают навыки проведения физико-химических экспериментов, построения графиков, математической обработки результатов измерений и анализа погрешностей. При выполнении лабораторных, практических и домашних заданий студенты приобретают навыки работы со справочной литературой.

Семинары по аналитической и коллоидной химии

Семинар 1. Предмет аналитической химии. Классификация методов анализа. Метрология. Классические методы количественного анализа.

Специалистам, работающим в области инженерной экологии, необходима достаточно полная информация о химическом составе сырья, продуктов производства, отходов производства и окружающей среды - воздуха, воды и почвы; особое внимание необходимо уделить выявлению вредных веществ и определению их количеств. Эту задачу решает аналитическая химия - наука об определении химического состава веществ. Химический анализ - главное и необходимое средство контроля за загрязнением окружающей среды.

Суперкраткое изучение данного раздела химии не может дать квалификацию химика-аналитика, его цель - ознакомление с минимальным количеством знаний, достаточным для того, чтобы ставить конкретные задачи химикам, ориентируясь в возможностях тех или иных методов анализа, и понимать смысл полученных результатов анализа.

Классификация методов анализа

Различают качественный и количественный анализ. Первый определяет наличие тех или иных компонентов, второй - их количественное содержание. При исследовании состава вещества качественный анализ всегда предшествует количественному анализу, так как выбор метода количественного анализа зависит от качественного состава изучаемого объекта. Методы анализа подразделяются на химические и физико-химические. Химические методы анализа основаны на превращении анализируемого вещества в новые соединения, обладающие определенными свойствами. По образованию характерных соединений элементов и устанавливают состав вещества.

Качественный анализ неорганических соединений основан на ионных реакциях и позволяет обнаруживать элементы в форме катионов и анионов. Например, ионы Cu 2+ можно определить по образованию комплексного иона 2+ ярко-синего цвета. При анализе органических соединений обычно определяют C, H, N, S, Р, Сl и другие элементы. Углерод и водород определяют после сжигания пробы, регистрируя выделившийся углекислый газ и воду. Существуют ряд приемов для обнаружения других элементов.

Качественный анализ подразделяют на дробный и систематический.

Дробный анализ основан на применении специфических и избирательных реакций, при помощи которых можно в любой последовательности обнаружить искомые ионы в отдельных порциях исследуемого раствора. Дробный анализ дает возможность быстро определить ограниченное число ионов (от одного до пяти), содержащихся в смеси, состав которой приблизительно известен.

Систематический анализ - это определенная последовательность обнаружения индивидуальных ионов после того, как все другие ионы, мешающие определению, будут найдены и удалены из раствора.

Отдельные группы ионов выделяют, используя сходство и различия свойств ионов при использовании так называемых групповых реагентов - веществ, которые одинаково реагируют с целой группой ионов. Группы ионов подразделяют на подгруппы, а те, в свою очередь, - на индивидуальные ионы, которые и обнаруживают при помощи т.н. аналитических реакций, характерных для данных ионов. Такие реакции обязательно сопровождаются аналитическим признаком, то есть внешним эффектом - выпадением осадка, выделением газа, изменением цвета раствора.

Аналитическая реакция обладает свойством специфичности, избирательности и чувствительности.

Специфичность позволяет обнаружить данный ион в определенных условиях в присутствии других ионов по тому или иному характерному признаку (цвет, запах и т.п.). Таких реакций сравнительно немного (например, реакция обнаружения иона NH 4 + действием на вещество щелочи при нагревании). Количественно специфичность реакции оценивается величиной предельного отношения, равного отношению концентраций определяемого иона и мешающих ионов. Например, капельная реакция на ион Ni 2+ действием диметилглиоксима в присутствии ионов Co 2+ удается при предельном отношении Ni 2+ к Co 2+ , равном 1: 5000.

Избирательность (или селективность) реакции определяется тем, что сходный внешний эффект возможен лишь с ограниченным числом ионов, с которыми реакция дает положительный эффект. Степень избирательности (селективности) тем больше, чем меньше число ионов, с которыми реакция дает положительный эффект.

Чувствительность реакции характеризуется рядом взаимно связанных величин: пределом обнаружения и пределом разбавления. Например, предел обнаружения в микрокристаллоскопической реакции на ион Ca 2+ действием серной кислоты равен 0,04 мкг Ca 2+ в капле раствора. Предельное разбавление (V пред, мл) рассчитывают по формуле: V пред = V · 10 2 /С мин, где V - объем раствора (мл). Предельное разбавление показывает, в каком объеме раствора (в мл) содержится 1 г определяемого иона. Например, в реакции иона К + с гексанитрозокобальтатом натрия - Na 3 образуется желтый кристаллический осадок К 2 Na. Чувствительность этой реакции характеризуется предельным разбавлением 1:50000. Это значит, что с помощью данной реакции можно открыть ион калия в растворе, содержащем не менее 1 г калия в 50000 мл воды.

Химические методы качественного анализа имеют практическое значение только для небольшого числа элементов. Для многоэлементного, молекулярного, а также функционального (определение природы функциональных групп) анализа используют физико-химические методы.

Компоненты подразделяют на основные (1 - 100% по массе), неосновные (0,01 - 1% по массе) и примесные или следовые (менее 0,01% по массе).

    В зависимости от массы и объема анализируемого образца различают макроанализ (0,5 - 1 г или 20 - 50 мл),

    полумикроанализ (0,1 - 0,01 г или 1,0 - 0,1 мл),

    микроанализ (10 -3 - 10 -6 г или 10 -1 - 10 -4 мл),

    ультрамикроанализ (10 -6 - 10 -9 г, или 10 -4 - 10 -6 мл),

    субмикроанализ (10 -9 - 10 -12 г или 10 -7 - 10 -10 мл).

Анализируемыми компонентами могут быть атомы и ионы, изотопы элементов, молекулы, функциональные группы и радикалы, фазы.

Классификация по природе определяемых частиц:

1.изотопный (физический)

2. элементный или атомный

3. молекулярный

4. структурно-групповой (промежуточный между атомным и молекулярным) - определение отдельных функциональных групп в молекулах органических соединений.

5. фазовый - анализ включений в неоднородных объектах, например минералах.

Другие виды классификации анализа:

Валовой и локальный.

Деструктивный и не деструктивный.

Контактный и дистанционный.

Дискретный и непрерывный.

Важные характеристики аналитической процедуры - экспрессность метода (быстрота проведения анализа), стоимость анализа, возможность его автоматизации.

I. Химия и медицина

1. Предмет, цели и задачи аналитической химии. Краткий исторический очерк развития аналитической химии. Место аналитической химии среди естественных наук и в системе медицинского образования.

Аналитическая химия – наука о методах определения состава веществ. Предмет ее - решение общих проблем теории химического анализа, совершенствование существующих и разработка новых, более быстрых и точных методов анализа (т.е теория и практика хим. анализа). Задача - развитие теории химических и физико-химических методов анализа, процессов и операций в научном исследовании, совершенствование старых методов анализа, разработка экспрессных и дистанционных м.а, разработка методов ультра- и микроанализа.

В зависимости от объекта исследования аналитическую химию делят на неорганический и органический анализ . Аналитическая химия относится к прикладным наукам. Практическое значение ее весьма разнообразно. С помощью методов химического анализа были открыты некоторые законы - закон постоянства состава, закон кратных отношений, определены атомные массы элементов,

химические эквиваленты, установлены химические формулы многих соединений и т. д.

Аналитическая химия в значительной степени способствует развитию естественных наук: геохимии, геологии, минералогии, физики, биологии, агрохимии, металлургии, химической технологии, медицины и др.

Предмет качественного анализа - развитие теоретических основ, усовершенствование существующих и разработка новых, более совершенных методов определения элементарного состава веществ. Задача качественного анализа - определение “качества” веществ или обнаружение отдельных элементов или ионов, входящих в состав исследуемого соединения.

Качественные аналитические реакции по способу их выполнения делятся на реакции “мокрым” и “сухим” путем . Наибольшее значение имеют реакции “мокрым” путем. Для проведения их исследуемое вещество должно быть предварительно растворено.

В качественном анализе находят применение только те реакции, которые сопровождаются какими-либо хорошо заметными для наблюдателя внешними эффектами: изменением окраски раствора; выпадением или растворением осадка; выделением газов, обладающих характерным запахом или цветом.

Особенно часто применяются реакции, сопровождающиеся образованием осадков и изменением окраски раствора. Такие реакции называются реакциями “открытия ”, так как с их помощью обнаруживаются присутствующие в растворе ионы.

Широко используются также реакции идентификации , с помощью которых проверяется правильность “открытия” того или иного иона. Наконец, применяются реакции осаждения, с помощью которых обычно отделяется одна группа ионов от другой или один ион от других ионов.

В зависимости от количества анализируемого вещества, объема раствора и техники выполнения отдельных операций химические методы качественного анализа делятся на макро-, микро-, полумикро- и ультрамикроанализ и др.

II. Качественный анализ

2. Основные понятия аналитической химии. Типы аналитических реакций и реагентов. Требования, предъявляемые к анализу, чувствительности, селективности определения состава веществ.

Аналитическая реакция - хим. реакция, используемая для разделения, обнаружения и количественного определения элементов, ионов, молекул. Она должна сопровождаться аналитическим эффектом (выпадением осадка, выделением газа, изменением окраски, запаха).

По типу химических реакций:

Общие – аналитические сигналы одинаковы для многих ионов. Реагент – общий. Пример: осаждение гидроксидов, карбонатов, сульфидов и т.д.

Групповые – аналитические сигналы характерны для определенной группы ионов, обладающих близкими свойствами. Реагент – групповой. Пример: осаждение ионов Ag + , Pb 2+ реагентом – соляной кислотой с образованием белых о садков AgCl, PbCl 2

Общие и групповые реакции применяют для выделения и разделения ионов сложной смеси.

Селективные – аналитические сигналы одинаковы для ограниченного количества ионов. Реагент – селективный. Пример: при действии реагента NH 4 SCN на смесь катионов только два катиона образуют окрашенные комплексные со единения: кроваво-красное 3-

и синее 2-

Специфические – аналитический сигнал характерен только для одного иона. Реагент – специфический. Таких реакций крайне мало.

По типу аналитического сигнала:

Цветные

Осадительные

Газовыделительные

Микрокристаллические

По функции:

Реакции обнаружения (идентификации)

Реакции разделения (отделения) для удаления мешающих ионов путем осаждения, экстракции или возгонки.

По технике выполнения:

Пробирочные – выполнятся в пробирках.

Капельные выполняются:

На фильтровальной бумаге,

На часовом или предметном стекле.

При этом на пластинку или на бумагу наносят 1-2 капли анализируемого раствора и 1-2 капли реагента, дающего характерное окрашивание или образование кристаллов. При выполнении реакций на фильтровальной бумаге используются адсорбционные свойства бумаги. Капля жидкости, нанесенная на бумагу, быстро рассасывается по капиллярам, а окрашенное соединение адсорбируется на небольшой площади листа. При наличии в растворе нескольких веществ скорость движения их может быть различной, что дает распределение ионов в виде концентрических зон. В зависимости от произведения растворимости осадка – или в зависимости константы устойчивости комплексных соединений: чем больше их значения, тем ближе к центру или в центре определенная зона.

Капельный метод разработал советский ученый-химик Н.А. Тананаев.

Микрокристаллические реакции основаны на образовании химических соединений, имеющих характерную форму, цвет и светопреломляющую способность кристаллов. Они выполняются на предметных стеклах. Для этого на чистое стекло наносят капиллярной пипеткой 1-2 капли анализируемого раствора и рядом 1-2 капли реагента, осторожно соединяют их стеклянной палочкой, не перемешивая. Затем с текло помещают на предметный столик микроскопа и рассматривают осадок, образовавшийся на месте

соприкосновения капель.

Для правильного использования в аналитике реакций следует учитывать чувствительность реакции . Она определяется наименьшим количеством искомого вещества, которое может быть обнаружено данным реактивом в капле раствора (0,01-0,03 мл). Чувствительность выражается рядом величин:

    Открываемый минимум - наименьшее количество вещества, содержащееся в исследуемом растворе и открываемое данным реактивом при определенных условиях выполнения реакции.

    Минимальная (предельная) концентрация показывает при какой наименьшей концентрации раствора данная реакция позволяет еще однозначно открывать обнаруживаемое вещество в небольшой порции раствора.

    Предельное разбавление - максимальное количество разбавителя, при котором еще определяется вещество.

Вывод: аналитическая реакция тем чувствительней, чем меньше открываемый минимум, меньше минимальная концентрация, но чем больше предельное разбавление.

Аналитическая химия - это раздел, который позволяет осуществлять контроль производства и качества продуктов в различных отраслях хозяйства. На результатах этих исследований основывается разведка природных ископаемых. Методы аналитической химии применяют для контроля степени загрязненности окружающей среды.

Практическая значимость

Анализ является основным вариантом выяснения химического состава кормов, удобрений, почв, сельскохозяйственных продуктов, что важно для нормального функционирования агропромышленной отрасли.

Качественные и количественные химии незаменимы в биотехнологии, медицинской диагностике. От степени оснащения исследовательских лабораторий зависит эффективность и результативность многих научных областей.

Теоретические основы

Аналитическая химия — это наука, позволяющая определять состав и химическое строение вещества. Ее методы помогают отвечать на вопросы, связанные не только с составными частями вещества, но и их количественным соотношением. С их помощью можно понять, в какой форме конкретный компонент находится в исследуемом веществе. В некоторых случаях с их помощью можно определять пространственное расположение составных компонентов.

При продумывании методов часто заимствуется информация из смежных областей наук, она адаптируется под конкретную сферу исследования. Какие вопросы решает аналитическая химия? Методы анализа позволяют разрабатывать теоретические основы, устанавливать границы их использования, оценивать метрологические и иные характеристики, создавать методики анализа разнообразных объектов. Они постоянно обновляются, модернизируются, становятся все более универсальными и эффективными.

Когда ведут речь о методе анализа, предполагают принцип, который положен в выражение количественной связи между определяемым свойством и составом. Отобранные приемы проведения, в том числе выявление и устранение помех, устройства для практической деятельности и варианты обработки проведенных измерений.

Функции аналитической химии

Выделяют три основные области знания:

  • решение общих вопросов анализа;
  • создание аналитических методов;
  • проработка конкретных задач.

Современная аналитическая химия — это совокупность качественного и количественного анализа. Первый раздел решает вопрос о компонентах, включенных в анализируемый объект. Второй дает информацию о количественном содержании одного либо нескольких частей вещества.

Классификация методов

Их делят на следующие группы: отбора проб, разложения проб, разделения компонентов, идентификации и определения их. Есть и гибридные методы, в которых сочетается разделение и определение.

Максимальное значение имеют методы определения. Их делят по характеру анализируемого свойства и варианту регистрации определенного сигнала. В задачи по аналитической химии часто входит расчет определенных компонентов на основе химических реакций. Для проведения таких расчетов необходима прочная математическая база.

Среди основных требований, которые предъявляются к методам аналитической химии, выделим:

  • правильность и отличную воспроизводимость получаемых результатов;
  • низкий предел определения конкретных компонентов;
  • экспрессность;
  • избирательность;
  • простота;
  • автоматизация эксперимента.

При выборе метода анализа важно четко знать цель и задачи исследования, оценить основные преимущества и недостатки доступных методик.

Химический метод аналитической химии основывается на качественных реакциях, характерных для определенных соединений.

Аналитический сигнал

После того, как будут завершены отбор и подготовка пробы, осуществляется стадия химического анализа. Она связана с обнаружением компонентов в смеси, определением его количественного содержания.

Аналитическая химия — это наука, в которой есть множество методов, одним из них является сигнал. Аналитическим сигналом считают среднее из нескольких измерений физической величины на последней стадии анализа, которая функционально связана с содержанием искомого компонента. Если необходимо обнаружить определенный элемент, пользуются аналитическим сигналом: осадком, окраской, линией в спектре. Определение количества компонента связано с массой осадка, интенсивностью спектральных линий, величиной силы тока.

Методы маскирования, концентрирования, разделения

Маскированием является торможение либо полное подавление химической реакции в присутствии тех веществ, которые могут менять ее скорость либо направление. Выделяют два варианта маскирования: равновесное (термодинамическое) и неравновесное (кинетическое). Для первого случая создают условия, при которых настолько понижается константа реакции, что процесс идет незначительно. Концентрация маскируемого компонента будет недостаточна для надежной фиксации аналитического сигнала. Кинетическое маскирование базируется на росте разницы между скоростями определяемого и маскируемого вещества с постоянным реагентом.

Проведение концентрирования и разделения обусловлено определенными факторами:

  • в пробе есть компоненты, которые мешают определению;
  • концентрация определяемого вещества не превышает нижний предел обнаружения;
  • выявляемые компоненты неравномерно распределяются в пробе;
  • проба радиоактивна либо токсична.

Разделение является процессом, благодаря которому компоненты, имеющиеся в исходной смеси, можно отделить друг от друга.

Концентрирование - операция, благодаря которой увеличивается отношение количества небольших элементов к числу макрокомпонента.

Осаждение подходит для разделения нескольких Используют его в комбинации с методами определения, рассчитанными на получение аналитического сигнала от твердых образцов. Основывается разделение на разной растворимости веществ, используемых в водных растворах.

Экстракция

Кафедра аналитической химии предполагает проведение лабораторных исследований, связанных с экстракцией. Под ним подразумевают физико-химический процесс распределения вещества между несмешивающимися жидкостями. Экстракцией называют и процесс переноса массы в ходе химических реакций. Такие методы исследования подходят для извлечения, концентрирования макро- и микрокомпонентов, а также для группового и индивидуального выделения при анализе разных природных и промышленных объектов. Подобные методики просты и быстры в исполнении, гарантируют отличную эффективность концентрирования и разделения, они полностью совместимы с разнообразными методами определения. Благодаря экстракции можно рассматривать состояние компонента в растворе при разных условиях, а также выявлять его физико-химические характеристики.

Сорбция

Ее используют для концентрирования и разделения веществ. Сорбционные технологии дают неплохую селективность разделения смеси. Это процесс поглощения паров, жидкостей, газов сорбентами (поглотителями на твердой основе).

Цементация и электролитическое выделение

Чем еще занимается аналитическая химия? Учебник содержит информацию о методике электровыведения, при которой концентрированное либо отделяемое вещество осаждают на твердых электродах в виде простого вещества либо в составе соединения.

Электролиз основывается на осаждении конкретного вещества с помощью электрического тока. Самым распространенным вариантом является катодное осаждение малоактивных металлов. Материалом для электрода может служить платина, углерод, медь, серебро, вольфрам.

Электрофорез

Он базируется на отличиях в скоростях движения частиц разного заряда в электрическом поле при изменении напряженности, размера частиц. В настоящее время в аналитической химии выделяют две формы электрофореза: простой (фронтальный) и на носителе (зонный). Первый вариант подходит для небольшого объема раствора, в котором содержатся разделяемые компоненты. Его помещают в трубку, где есть растворы. Аналитическая химия объясняет все процессы, происходящие на катоде и аноде. При зонном электрофорезе передвижение частиц осуществляется в стабилизирующей среде, удерживающей их на местах после отключения тока.

Метод цементации состоит в восстановлении составных частей на металлах, имеющих существенный отрицательный потенциал. В подобном случае происходит сразу два процесса: катодный (с выделением компонента) и анодный (цементирующий металл растворяется).

Испарение

Дистилляция основывается на различной летучести химических веществ. Происходит переход из жидкой формы в газообразное состояние, потом конденсируется, опять переходя в жидкую фазу.

При простой отгонке протекает одноступенчатый процесс разделения, затем концентрирования вещества. В случае выпаривания удаляют те вещества, которые присутствуют в летучей форме. Например, среди них могут быть макро- и микрокомпоненты. Сублимация (возгонка) предполагает перевод вещества из твердой фазы в газ, минуя жидкую форму. Подобную методику применяют в тех случаях, когда разделяемые вещества мало растворимы в воде либо плохо плавятся.

Заключение

В аналитической химии существует множество способов выделения одного вещества из смеси, выявления его наличия в исследуемом образце. Среди самых применяемых аналитических методов можно отметить хроматографию. Она позволяет выявлять жидкие, газообразные, твердые вещества, имеющие молекулярную массу от 1 до 106 а. е. м. Благодаря хроматографии можно получать полноценную информацию о свойствах и строении органических веществ различных классов. Основывается метод на распределении компонентов между подвижной и неподвижной фазой. Стационарной является твердое вещество (сорбент) либо пленка жидкости, которая нанесена на твердое вещество.

Подвижной фазой выступает газ либо жидкость, которые протекают сквозь неподвижную часть. Благодаря такой технологии можно идентифицировать отдельные компоненты, проводить количественный состав смеси, разделять ее на компоненты.

Помимо хроматографии, в качественном и количественном анализе используют гравиметрические, титриметрические, кинетические методы. Все они основываются на физических и химических свойствах веществ, позволяют исследователю обнаруживать в пробе определенные соединения, проводить расчеты их количественного содержания. Аналитическую химию по праву можно считать одним из важнейших разделов науки.